June 2005

ASM519774A

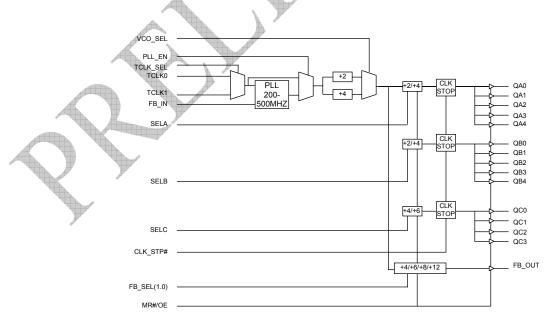
rev 0.3

2.5V or 3.3V, 200-MHz, 12-Output Zero Delay Buffer

Features

- Output frequency range: 8.3MHz to 125MHz
- Input frequency range: 4.2MHz to 62.5MHz
- 2.5V or 3.3V operation
- Split 2.5V/3.3V outputs
- 14 Clock outputs: Drive up to 28 clock lines
- 1 Feedback clock output
- 2 LVCMOS reference clock inputs
- 150 pS max output-output skew
- PLL bypass mode
- 'SpreadTrak'
- Output enable/disable
- Pin compatible with MPC9774 and CY29774AI.
- Industrial temperature range: –40°C to +85°C
- 52Pin 1.0mm TQFP package
- RoHS Compliance

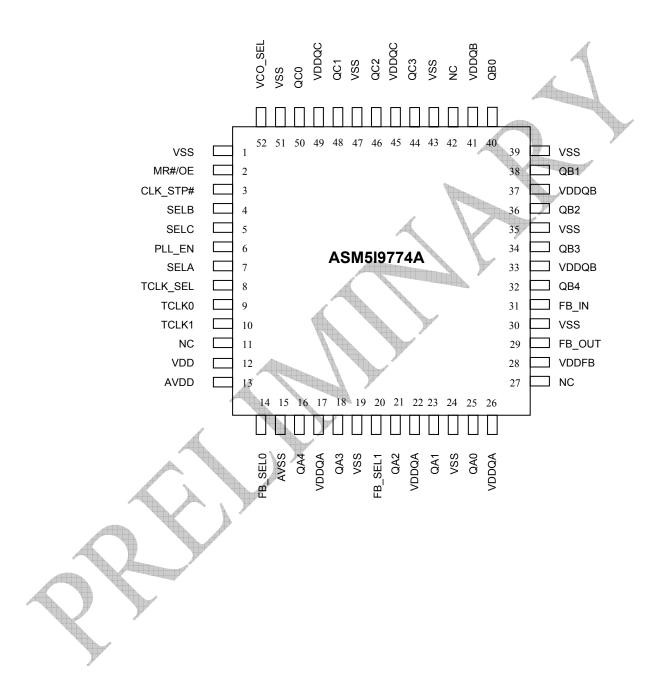
Functional Description


The ASM5I9774A is a low-voltage high-performance 125MHz PLL-based zero delay buffer designed for high-speed clock distribution applications.

The ASM5I9774A features two reference clock inputs and provides 14 outputs partitioned in 3 banks of 5, 5, and 4 outputs. Bank A and Bank B divide the VCO output by 4 or 8 while Bank C divides by 8 or 12 per SEL(A:C) settings, see Functional Table. These dividers allow output to input ratios of 6:1, 4:1, 3:1, 2:1, 3:2, 4:3, 1:1, and 2:3. Each LVCMOS compatible output can drive 50 Ω series or parallel terminated transmission lines. For series terminated transmission lines, each output can drive one or two traces giving the device an effective fanout of 1:28.

The PLL is ensured stable given that the VCO is configured to run between 200 MHz to 500 MHz. This allows a wide range of output frequencies from 8.3 MHz to 125 MHz. For normal operation, the external feedback input, FB_IN, is connected to the feedback output, FB_OUT. The internal VCO is running at multiples of the input reference clock set by the feedback divider, see Frequency Table.

When PLL_EN is LOW, PLL is bypassed and the reference clock directly feeds the output dividers. This mode is fully static and the minimum input clock frequency specification does not apply.


Block Diagram

Alliance Semiconductor

2575, Augustine Drive • Santa Clara, CA • Tel: 408.855.4900 • Fax: 408.855.4999 • www.alsc.com

Pin Configuration

Pin Description¹

Pin	Name	I/O	Туре	Description
9	TCLK0	I, PD	LVCMOS	LVCMOS/LVTTL reference clock input
10	TCLK1	I, PU	LVCMOS	LVCMOS/LVTTL reference clock input
16, 18, 21, 23, 25	QA(4:0)	0	LVCMOS	Clock output bank A
32, 34, 36, 38, 40	QB(4:0)	0	LVCMOS	Clock output bank B
44, 46, 48, 50	QC(3:0)	0	LVCMOS	Clock output bank C
29	FB_OUT	0	LVCMOS	Feedback clock output. Connect to FB_IN for normal operation.
31	FB_IN	I, PU	LVCMOS	Feedback clock input . Connect to FB_OUT for normal operation. This input should be at the same voltage rail as input reference clock. See <i>Table 1</i> .
2	MR#/OE	I, PU	LVCMOS	Output enable/disable input. See Table 2.
3	CLK_STP#	I, PU	LVCMOS	Clock stop enable/disable input. See Table 2.
6	PLL_EN	I, PU	LVCMOS	PLL enable/disable input. See Table 2.
8	TCLK_SEL	I, PD	LVCMOS	Reference select input. See Table 2.
52	VCO_SEL	I, PD	LVCMOS	VCO divider select input. See Table 2.
7, 4, 5	SEL(A:C)	I, PD	LVCMOS	Frequency select input, Bank (A:C). See Table 3.
20, 14	FB_SEL(1,0)	I, PD	LVCMOS	Feedback dividers select input. See Table 4.
17, 22, 26	VDDQA	Supply	VDD	2.5V or 3.3V Power supply for bank A output clocks ^{2,3}
33, 37, 41	VDDQB	Supply	VDD	2.5V or 3.3V Power supply for bank B output clocks ^{2,3}
45, 49	VDDQC	Supply	VDD	2.5V or 3.3V Power supply for bank C output clocks ^{2,3}
28	VDDFB	Supply	VDD	2.5V or 3.3V Power supply for feedback output clock ^{2,3}
13	AVDD	Supply	VDD	2.5V or 3.3V Power supply for PLL ^{2,3}
12	VDD	Supply	VDD	2.5V or 3.3V Power supply for core and inputs ^{2,3}
15	AVSS	Supply	Ground	Analog Ground
1, 19, 24, 30, 35, 39, 43, 47, 51	VSS	Supply	Ground	Common Ground
11, 27, 42	NC			No Connection

Note:

1.PU = Internal pull up, PD = Internal pull down.
2.A 0.1-µF bypass capacitor should be placed as close as possible to each positive power pin (<0.2"). If these bypass capacitors are not close to the pins their high frequency filtering characteristics will be cancelled by the lead inductance of the traces.
3.AVDD and VDD pins must be connected to a power supply level that is at least equal or higher than that of VDDQA, VDDQB, VDDQC, and VDDFB

power supply pins

'SpreadTrak'

Many systems being designed now utilize a technology called Spread Spectrum Frequency Timing Generation. ASM59774A is designed so as not to filter off the Spread Spectrum feature of the Reference Input, assuming it exists. When a zero delay buffer is not designed to pass the Spread Spectrum feature through, the result is a significant amount of tracking skew which may cause problems in the systems requiring synchronization.

Table 1. Frequency Table

Feedback Output Divider	VCO	Input Frequency Range (AVDD = 3.3V)	Input Frequency Range (AVDD = 2.5V)
÷8	Input Clock * 8	25 MHz to 62.5 MHz	25 MHz to 50 MHz
÷12	Input Clock * 12	16.6 MHz to 41.6 MHz	16.6 MHz to 33.3 MHz
÷16	Input Clock * 16	12.5 MHz to 31.25 MHz	12.5 MHz to 25 MHz
÷24	Input Clock * 24	8.3 MHz to 20.8 MHz	8.3 MHz to 16.6 MHz
÷32	Input Clock * 32	6.25 MHz to 15.625 MHz	6.25 MHz to 12.5 MHz
÷48	Input Clock * 48	4.2 MHz to 10.4 MHz	4.2 MHz to 8.3 MHz

Table 2. Function Table (configuration controls)

Control	Default	0	1
TCLK_SEL	0	TCLK0	TCLK1
VCO_SEL	0	VCO+2 (high input frequency range)	VCO÷4 (low input frequency range)
PLL_EN	1	Bypass mode, PLL disabled. The input clock connects to the output dividers	PLL enabled. The VCO output connects to the output dividers
MR#/OE		Outputs disabled (three-state) and reset of the device. During reset/output disable the PLL feedback loop is open and the VCO running at its minimum frequency. The device is reset by the internal power-on reset (POR) circuitry during power-up.	Outputs enabled
CLK_STP#	1	QA, QB, and QC outputs disabled in LOW state. FB_OUT is not affected by CLK_STP#.	Outputs enabled

Table 3. Function Table (Bank A, B and C)

VCO_SEL	SELA	QA(4:0)	SELB	QB(4:0)	SELC	QC(3:0)
0	0	÷4	0	÷4	0	÷8
0	1	÷8	1	÷8	1	÷12
1	0	÷8	0	÷8	0	÷16
1	1	÷16	1	÷16	1	÷24

Table 4. Function Table (FB_OUT)

VCO_SEL	FB_SEL1	FB_SEL0	FB_OUT
0	0	0	÷8
0	0	1	÷16
0	1	0	÷12
0	1	1	÷24
1	0	0	÷16
1	0	1	÷32
1	1	0	÷24
1	1	1	÷48

Absolute Maximum Conditions

Parameter	Description	Condition	Min	Max	Unit
VDD	DC Supply Voltage		-0.3	5.5	V
VDD	DC Operating Voltage	Functional	2.375	3.465	V
V _{IN}	DC Input Voltage	Relative to VSS	-0.3	VDD+ 0.3	V
V _{OUT}	DC Output Voltage	Relative to VSS	-0.3	VDD+ 0.3	V
V _{TT}	Output termination Voltage		-	VDD ÷2	V
LU	Latch Up Immunity	Functional	200	-	mA
R _{PS}	Power Supply Ripple	Ripple Frequency < 100 kHz	-	150	mVp-p
Ts	Temperature, Storage	Non Functional	-65	+150	°C
T _A	Temperature, Operating Ambient	Functional	-40	+85	°C
TJ	Temperature, Junction	Functional	-	150	°C
${\it Ø}_{ m JC}$	Dissipation, Junction to Case	Functional	-	23	°C/W
$oldsymbol{ extsf{Ø}}_{ extsf{JA}}$	Dissipation, Junction to Ambient	Functional	-	55	°C/W
ESD _H	ESD Protection (Human Body Model)		2000	-	Volts
FIT	Failure in Time	Manufacturing test		10	ppm

DC Electrical Specifications (VDD = $2.5V \pm 5\%$, T_A = -40° C to $+85^{\circ}$ C)

Parameter	Description	Condition	Min	Тур	Max	Unit
VIL	Input Voltage, Low	LVCMOS	-	-	0.7	V
V _{IH}	Input Voltage, High	LVCMOS	1.7	-	VDD+0.3	V
V _{ol}	Output Voltage, Low ¹	I _{oL} = 15mA	-	-	0.6	V
V _{OH}	Output Voltage, High ¹	I _{он} = –15mA	1.8	-		V
I _{IL}	Input Current, Low ²	V _{IL} = VSS	-	-	-100	μA
I _{IH}	Input Current, High ²	V _{IL} = VDD	-	-	100	μA
I _{DDA}	PLL Supply Current	AVDD only	-	5	10	mA
	Quiescent Supply Current	All VDD pins except AVDD			8	mA
I _{DD}	Dynamic Supply Current	Outputs loaded @ 100 MHz		135		mA
C _{IN}	Input Pin Capacitance		-	4	-	pF
Z _{OUT}	Output Impedance		14	18	22	Ω

Note: 1. Driving one 50Ωparallel-terminated transmission line to a termination voltage of VTT. Alternatively, each output drives up to two 50 Ωseriesterminated transmission lines

2. Inputs have pull-up or pull-down resistors that affect the input current.

DC Electrical Specifications (V_{DD}= 3.3V ± 5%, T_A= -40°C to +85°C)

Parameter	Description	Condition	Min	Тур	Max	Unit
VIL	Input Voltage, Low	LVCMOS	-	-	0.8	V
V _{IH}	Input Voltage, High	LVCMOS	2.0	-	VDD + 0.3	V
V _{oL}	Output Voltage, Low ¹	l _{oL} = 24 mA	-	-	0.55	V
VOL	Output Voltage, Low	l _{o⊾} = 12 mA	-	-	0.30	v
V _{OH}	Output Voltage, High ¹	I _{он} = –24 mA	2.4	-	-	V
I	Input Current, Low ²	V _{IL} = VSS	-	-	-100	μA
I _{IH}	Input Current, High ²		-	-	100	μA
I _{DDA}	PLL Supply Current	AVDD only	-	5	10	mA
	Quiescent Supply Current	All VDD pins except AVDD	-	-	8	mA
I _{DD}	Dynamic Supply Current	Outputs loaded @ 100 MHz	-	225	-	mA
C _{IN}	Input Pin Capacitance		-	4	-	pF
Z _{OUT}	Output Impedance		12	15	18	Ω

 Note: 1. Driving one 50Ωparallel-terminated transmission line to a termination voltage of VTT. Alternatively, each output terminated transmission lines
 Inputs have pull-up or pull-down resistors that affect the input current. drives up to two 50 Ωseries-

AC Electrical Specifications (VDD = $2.5V \pm 5\%$, T_A = -40° C to $+85^{\circ}$ C)¹

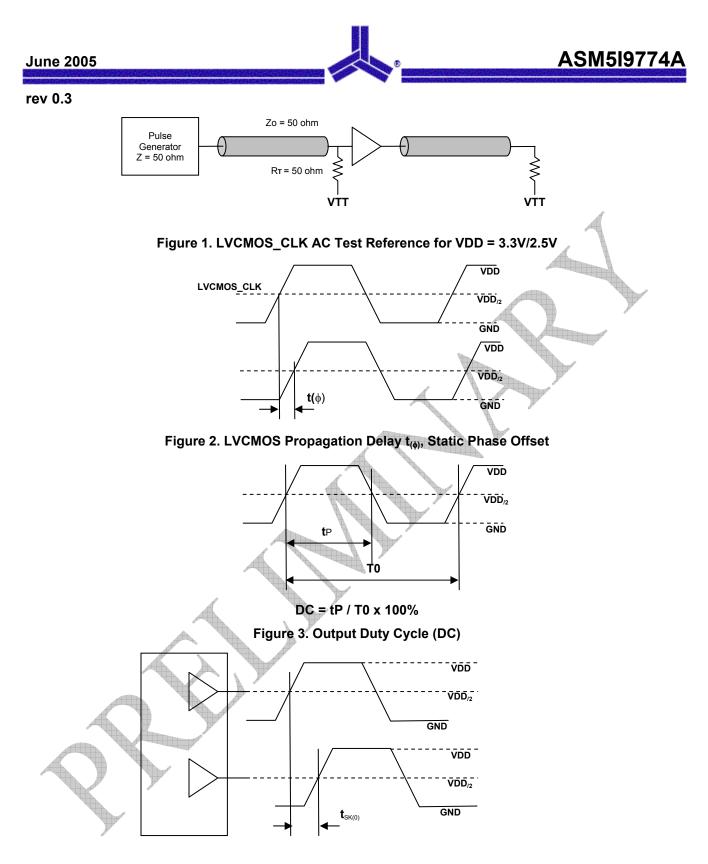
Parameter	Description	Condition	Min	Тур	Max	Unit
f _{vco}	VCO Frequency		200	-	400	MHz
		÷8 Feedback	25	-	50	
		÷12 Feedback	16.6	-	33.3	
		÷16 Feedback	12.5	-	25	
f _{in}	Input Frequency	÷24 Feedback	8.3	- 🧥	16.6	MHz
		÷32 Feedback	6.3	_	12.5	d and a second s
		÷48 Feedback	4.2		8.3	4
		Bypass mode (PLL_EN = 0)	0		200	
\mathbf{f}_{refDC}	Input Duty Cycle		25		75	%
t _r , t _f	TCLK Input Rise/FallTime	0.7V to 1.7V			1.0	nS
		÷4 Output	50	-	100	
		÷8 Output	25	-	50	
f _{MAX}	Maximum Output Frequency	÷12 Output	16.6	-	33.3	MHz
		÷16 Output	12.5	-	25	
		÷24 Output	8.3	-	16.6	
DC	Output Duty Cycle		45	-	55	%
t _r , t _f	Output Rise/Fall times	0.7V to 1.8V	0.1	-	0.75	nS
t(φ)	Propagation Delay (static phase offset)	TCLK to FB_IN, does not include jitter	-100	-	100	pS
t _{sk(O)}	Output-to-Output Skew	Skew within Bank	-	-	150	pS
t _{sk(B)}	Bank-to-Bank Skew	Banks at same frequency	-	-	150	pS
ιsk(B)	Bullik to Bullik Okew	Banks at different frequency	-	-	200	ρo
t _{PLZ, HZ}	Output Disable Time		-	-	10	nS
t _{PZL, ZH}	Output Enable Time		-	-	10	nS
BW	PLL Closed Loop Bandwidth (-3 dB)		-	0.5 -1.0	-	MHz
t _{JIT(CC)}	Cycle-to-Cycle Jitter	Same frequency	-	-	100	pS
CJII(CC)		Multiple frequencies	-	-	250	pe
t _{JIT(PER)}	Period Jitter		-	-	100	pS
t _{JIT(φ)}	I/O Phase Jitter		-	-	125	pS
t _{LOCK}	Maximum PLL Lock Time		-	-	1	mS

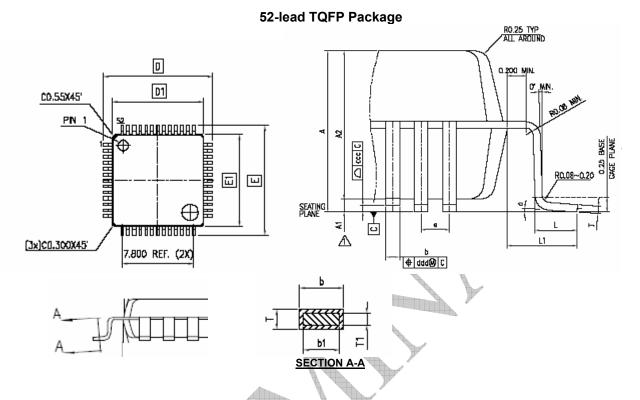
Note: 1. AC characteristics apply for parallel output termination of 50Ω to VTT. Outputs are at same supply voltage unless otherwise stated. Parameters are guaranteed by characterization and are not 100% tested.

AC Electrical Specifications (VDD = $3.3V \pm 5\%$, T_A = -40° C to $+85^{\circ}$ C)¹

Parameter	Description	Condition	Min	Тур	Max	Unit
f _{vco}	VCO Frequency		200	-	500	MHz
f _{in}	Input Frequency	÷8 Feedback	25	-	62.5	
		÷12 Feedback	16.6	-	41.6	
		÷16 Feedback	12.5	-	31.25	
		÷24 Feedback	8.3	-	20.8	MHz
		÷32 Feedback	6.25	-	15.625	
		÷48 Feedback	4.2		10.4	P
		Bypass mode (PLL_EN = 0)	0		200	
\mathbf{f}_{refDC}	Input Duty Cycle	6	25		75	%
t _r , t _f	TCLK Input Rise/FallTime	0.8V to 2.0V		-	1.0	nS
fmax	Maximum Output Frequency	÷4 Output	50		125	
		÷8 Output	25		62.5	
		÷12 Output	16.6	-	41.6	MHz
		÷16 Output	12.5	-	31.25	
		÷24 Output	8.3	-	20.8	
DC	Output Duty Cycle		45	-	55	%
tr, tf	Output Rise/Fall times	0.8V to 2.4V	0.1		1.0	nS
$t_{(\phi)}$	Propagation Delay (static phase offset)	TCLK to FB_IN, same VDD, does not include jitter	-100	-	100	pS
$t_{\rm sk(O)}$	Output-to-Output Skew	Skew within Bank	-	-	150	pS
t _{sk(B)}	Bank-to-Bank Skew	Banks at same voltage, same frequency	-	-	150	
		Banks at same voltage, different frequency	-	-	225	pS
		Banks at different voltage	-	-	250	
t _{PLZ, HZ}	Output Disable Time		-	-	10	nS
t _{PZL, ZH}	Output Enable Time		-	-	10	nS
BW	PLL Closed Loop Bandwidth (-3dB)		-	0.5 - 1.0	-	MHz
t _{JIT(CC)}	Cycle-to-Cycle Jitter	Same frequency	-	-	150	- 0
		Multiple frequencies	-	-	300	pS
t _{JIT(PER)}	Period Jitter		-	-	100	pS
$t_{JIT(\phi)}$	I/O Phase Jitter	I/O at same VDD	-	-	150	pS
t _{LOCK}	Maximum PLL Lock Time		-	-	1	mS

Note: 1. AC characteristics apply for parallel output termination of 50Ω to VTT. Outputs are at same supply voltage unless otherwise stated. Parameters are guaranteed by characterization and are not 100% tested.

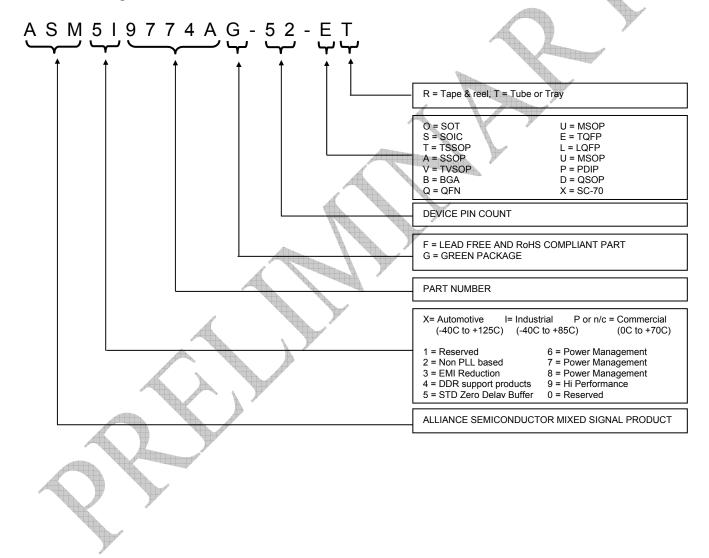



Figure 4. Output-to-Output Skew, t_{sk(O)}

2.5V or 3.3V, 200-MHz, 12-Output Zero Delay Buffer

9 of 12

Package Information



			/			
	Dimensions					
Symbol	Inch	es	Millimeters			
	Min	Max	Min	Max		
A		0.0472		1.2		
A1	0.0020	0.0059	0.05	0.15		
A2	0.0374	0.0413	0.95	1.05		
D	0.4646	0.4803	11.8	12.2		
D1	0.3898	0.3976	9.9	10.1		
E	0.4646	0.4803	11.8	12.2		
E1	0.3898	0.3976	9.9	10.1		
L	0.0177	0.0295	0.45	0.75		
L1	0.03937	7 REF	1.00	REF		
Т	0.0035	0.0079	0.09	0.2		
T1	0.0038	0.0062	0.097	0.157		
b	0.0102	0.0150	0.26	0.38		
b1	0.0106	0.0130	0.27	0.33		
R0	0.0031	0.0079	0.08	0.2		
а	0°	7°	0°	7°		
е	0.0256	BASE	0.65 E	BASE		

Ordering Information

Part Number	Marking	Package Type	Operating Range
ASM5I9774A-52-ET	ASM5I9774A	52-pin TQFP, Tray	Industrial
ASM5I9774A-52-ER	ASM5I9774A	52-pin TQFP – Tape and Reel	Industrial
ASM5I9774AG-52-ET	ASM5I9774AG	52-pin TQFP, Tray, Green	Industrial
ASM5I9774AG-52-ER	ASM5I9774AG	52-pin TQFP – Tape and Reel, Green	Industrial

Device Ordering Information

Licensed under US patent #5,488,627, #6,646,463 and #5,631,920.

Alliance Semiconductor Corporation 2575, Augustine Drive, Santa Clara, CA 95054 Tel# 408-855-4900 Fax: 408-855-4999 www.alsc.com Copyright © Alliance Semiconductor All Rights Reserved Part Number: ASM5I9774A Document Version: 0.3

Note: This product utilizes US Patent #6,646,463 Impedance Emulator Patent issued to Alliance Semiconductor, dated 11-11-2003

© Copyright 2003 Alliance Semiconductor Corporation. All rights reserved. Our three-point logo, our name and Intelliwatt are trademarks or registered trademarks of Alliance. All other brand and product names may be the trademarks of their respective companies. Alliance reserves the right to make changes to this document and its products at any time without notice. Alliance assumes no responsibility for any errors that may appear in this document. The data contained herein represents Alliance's best data and/or estimates at the time of issuance. Alliance reserves the right to change or correct this data at any time, without notice. If the product described herein is under development, significant changes to these specifications are possible. The information in this product data sheet is intended to be general descriptive information for potential customers and users, and is not intended to operate as, or provide, any guarantee or warrantee to any user or customer. Alliance does not assume any responsibility or liability arising out of the application or use of any product described herein, and disclaims any express or implied warranties related to the sale and/or use of Alliance products including liability or warranties related to fitness for a particular purpose, merchantability, or infringement of any intellectual property rights, except as express agreed to in Alliance's Terms and Conditions of Sale (which are available from Alliance). All sales of Alliance products are made exclusively according to Alliance's Terms and Conditions of Sale. The purchase of products from Alliance does not convey a license under any patent rights, copyrights; mask works rights, trademarks, or any other intellectual property rights of Alliance or third parties. Alliance does not authorize its products for use as critical components in life-supporting systems where a malfunction or failure may reasonably be expected to result in significant injury to the user, and the inclusion of Alliance products in such life-supporting systems implies that the manufacturer assumes all risk of such use and agrees to indemnify Alliance against all claims arising from such use.